Code No: R22A1201 R22 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) II B.Tech II Semester Regular Examinations, June 2024 Automata and Compiler Design (IT, CS&IT, CSE-AIML & B.Tech-AIML) Roll No Time: 3 hours Max. Marks: 60

Note: This question paper contains two parts A and B

Part A is compulsory which carries 10 marks and Answer all questions.

Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

		PART-A (10 Marks)	BCLL	CO(s)	Marks
		(Write all answers of this part at one place)			
1	А	Name the types of finite automata.	L1	CO-I	[1M]
	В	Identify the applications of automata.	L2	CO-I	[1M]
	С	Differentiate between L attribute and S attribute.	L3	CO-II	[1M]
	D	Relate CLR and LALR parsers.	L3	CO-II	[1M]
	Е	List out the need for type checking.	L1	CO-III	[1M]
	F	Define ambiguous grammar.	L1	CO-IIII	[1M]
	G	Outline the symbol table.	L2	CO-IV	[1M]
	Η	Define lifetime of the variable.	L1	CO-IV	[1M]
	Ι	Outline the L-attribute.	L2	CO-V	[1M]
	J	Mention the basic block of DAG.	L1	CO-V	[1M]
		PART-B (50 Marks)			
		<u>SECTION-I</u>			
2	А	Construct a DFA, which accepts set of all string over	L6	CO-I	[5M]
		{a,b} which accepts even number of a's and even number			
		of b's.			
	В	Differentiate NFA and DFA.	L2	CO-I	[5M]
•		OR			
3	А	Construct regular expression string ends with 00 and			
	P	convert into DFA		GO T	
	В	Explain How Finite automata are useful in the lexical	L2	CO-I	[5M]
		analysis?			
		SECTION-II	т э		[7]
4	А	Construct $LL(1)$ Parse Table for the grammar	L3	CO-I	[5][1]
		$E \rightarrow E + 1/1, 1 \rightarrow 1 + F/F, F \rightarrow (E)$ and parse the string			
	п		1010		[~] (]
	В	Identify the rule to eliminate left recursion in a grammar.	L2,L3	CO-II	[5][1]
		Prepare and eliminate the left recursion for the grammar.			
		$S \rightarrow Aa \mid b$			
		$A \rightarrow Ac \mid Sd \mid \varepsilon$			
		OR			
5	А	Explain the phases of a compiler.	L2	CO-II	[5M]
	В	Perform Shift Reduce Parsing for the input string (a,(a,a))	L4	CO-II	[5M]
		using the grammar.			
		S->(L) a			
		L->L.S S			

		SECTION-III			
6	А	Translate the expression $(a+b)*(c+d)+(a+b+c)$ into the following: i. Triples ii. Indirect triples.	L6	CO-III	[5M]
	В	Discuss about the Chomsky hierarchy of languages. OR	L1	CO-III	[5M]
7	А	Identify the relation between the recursive and context sensitive language.	L2	CO-III	[5M]
	В	Outline the type-checking rule for overloaded functions with example. SECTION-IV	L2	CO-III	[5M]
8	А	List the features of copy restore linkage in passing arguments.	L2	CO-IV	[5M]
	В	Explain storage allocation strategies in detail. OR	L2	CO-IV	[5M]
9	А	Discuss about the followings: i) Dead code Elimination ii) Code motion.	L2	CO-IV	[5M]
	В	What is peephole optimization? Explain with example. SECTION-V	L1	CO-IV	[5M]
10	А	Explain the various object code forms in detail.	L3	CO-V	[5M]
	В	Explain in brief about Induction variable elimination. OR	L2	CO-V	[5M]
11	А	Construct a DAG and write the sequence of instructions for the expression $a + a * (b-c) + (b-c) * d$	L6	CO-V	[5M]
	В	Explain machine dependent code generation and generic code generation.	L1	CO-V	[5M]
